
Fermi National Accelerator Laboratory 
FERMILAB-Pub-90/185-A 
September 1990 

MICROWAVE DISTORTIONS FROM 

COLLAPSING DOMAIN-WALL BUBBLES 

MICHAEL S. TURNER AND RICHARD WATKINS 

Department of Astronomy & Astrophysics 

Enrico Fermi Institute 

The University of Chicago 

NASA/Fermiiab Astrophysics Center 

Fermi National Accelerator Laboratory 

LAWRENCE M. WIDROW 

Department of Physics, Harvard University 

Harvard-Smithsonian Center for Astrophysics 

Canadian Lnstitute for Theoretical Astrophysics 

University of Toronto 

ABSTRACT: It has been suggested that large-scale structure can be seeded 

by a post-recombination phase transition that produces soft domain walls. We 

find that oscillating domain-v&I bubbles produce a distinctive signature on the 

microwave sky: hot and cold spots with amplitude characterized by GaH{l (u is 

the surface tension of the wall). These fluctuations are non-gaussian and offer a 

powerful probe of such models. 
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Heavy walls have long been known to be a cosmological disaster (see. e.g., &l’dovich 

et al., 1974; Vilenkin 1984). However, very light (soft) domain walls have recently been 

invoked to explain large-scale structures in the Universe (Hill. Fry, and Schramm. 1988). 

The proponents of this scenario argue chat soft domain walls can seed large-scale structure 

while producing only small distortions of the microwave background provided that the walls 

form after decoupling so that the energy density on the surface of last scattering can be 

<arbitrarily smooth. This eliminates the Sachs-Wolfe (1967) distortions that usually provide 

the strongest constraint to models of structure formation. Distortions in the microwave 

background will, h owever, arose from three other sources: 1) the gravitational effects of 

inf?nite walls (Stebbins and Turner, i989); I ‘J) the gravitationai eirects of coiiapsing closed 

surfaces of domain wall (hereafter, vacuum bags or bubbles); and 3) the Rees-Sciama 

(1968) effect associated with matter that is accreting around vacuum bags (or walls). 

The last of these effects is expected to give rise to very small temperature fluctuations, 

6T/T w (v/c)~ 5 10d6, where v is the virial velocity of the bound clumps that form (Hill, 

Fry, and Schramm, 1988). The gravitational field of an intinite wall is nonlocal and difficult 

to treat; however, one expects that the microwave distortions associated with an infInite 

wall will be 6T/T - Gu&,,,, where &err is the correlation length for the wall network 

and c is the wall surface tension (Stebbins and Turner, 1989). Today, one expects that 

L&~ is of order the Hubble radius H{l, so 6T/T - GoIf;’ z 3 x 10e6 (!I-‘cr/MeV3) 

(Ho = 1OOh kmsec-l Mpc-’ is th e present value of the Hubble constant). These distortions 

arise on large angular scales (2 10’) and current limits to the isotropy of the microwave 

background constrain c to be less than about 100MeV3 (Stebbins and Turner. 1989). 

In this Letter we call attention to the fact that collapsing vacuum bubbles lead to 

a pattern of temperature fluctuations that is very distinctive and different from those 

arising from infinite domain walls or the Rees-Sciama effect. These distortions appear 

as small (S lo) hot (or blue) and cold ( or red) spots on the microwave sky. They arise 

when photons from the last scattering surface traverse a collapsing (or expanding) vacuum 

bubble because the gravitational blue shift~that a photon experiences entering the bubble 

is not equal to the red shift it experiences exiting the bubble. Vacuum bubbles are formed 

during the phase transition and subsequent evolution of the domain-wall network (Viler&in, 

1984: Press, Ryden, and Spergel, 1989). Bubbles that are larger than the Hubble :.rdius 

are conformally stretched with the expansion, whereas sub-Hubble-sized bubbles collapse 

relativistically due to surface tension. During the initial stages of collapse irregularly 

shaped bubbles become more spherical; in the final stages of collapse. the bubble walls 
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move nearly at the speed of light and any remaining irregularities are frozen in (TVidrow, 

1989a). Recent numerical simulations (Press, Ryden, and Spergel, 1989) indicate that 

spherical, sub-Hubble-sized bubbles are a robust feature of a domain-wall network. 

To begin we calculate the frequency shift for a photon traversing a collapsing, spherical 

bubble in Minkowski space. We neglect the expansion of the Universe, the small effect of 

matter falling in upon the vacuum bubble, and the bubble’s self gravity. This should be 

a reasonable approximation for the vacuum bubbles of interest-those with radius much 

smaller than the Hubble radius and much greater than their Schwarzschild radius. A 

spherical bubble is characterized by its mass M; the maximum radius of the bubble is 

R max z dm. Space-time is Schwarzschild outside the bubble and flat inside. (We 

neglect the finite thickness of the bubble wall.) Consider a photon that originates far 

from a bubble and reaches its surface when the bubble radius is R(ti,). The photon exits 

sometime later when the bubble radius R(&) < R(th) is smaller. The photon is blue 

shifted by an amount Gdbf/R(tin) in reaching the bubble wall, is unaffected as it traverses 

the inside of the bubble, and is red shifted by an amount GM/R(t,,,) as it travels far from 

the bubble. The net shift in the photon frequency is 

which results in a temperature shift bT/T = Avfv; here A0 E GM/H,, = 4nGaR-. 

The quantity A0 corresponds to the characteristic microwave distortion for a domain- 

wall network with correlation length R,,; the dimensionless amplitude A represents the 

enhancement due to the fact that the bubble is collapsing and can be very much smaller 

than its initial size when the photon exits. 

For simplicity, we consider an infinitely thin, spherical bubble that collapses once. (We 

leave discussion of the post-collapse fate of the bubble for later.) The equation of motion 

for a collapsing bubble in Minkowski space is (Ipser and Sikivie, 1984) 

where an overdot denotes d/dt. Integrating Eq. (2) it follows that 

t=R,, 
/ 

WlRms. &, 

1 [l _ w4] l/2’ 

where we have assumed that the bubble starts its collapse at time t = 0. The speed of the 

bubble’s surface (= A) starts from zero and quickly approaches the speed of light. The 

total time for the vacuum bag to collapse is r rx 1.3Rmax. 
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A photon traversing a collapsing vacuum bubble is characterized by its impact param- 

eter b, the closest distance it passes from the center of the bubble, and d, the perpendicular 

distance from the photon to the plane of the bubble’s center at time t = 0. .4t time t, 

the distance of the photon from the center of the bubble is I?,-,(t) = Jb2 + (d - t)Z. By 

equating q(t) to the position of the bubble’s surface, we can solve for R(ti,) and R(t,,t) 

and determine 6T/T. For photons that enter the bubble prior to time t = 0 we take 

W&J = &ax> avoiding discussion of the evolution of the bubble prior to its collapse. In 

Fig. 1 we show the microwave distortion profiles for spots with different values of d/R,. 

We can use the fact that the bubble surface quickly approaches the speed of light to 

find a simple analytic form for A as a function of d for photons that pierce the center 

of the bubble (i.e., with b = 0); for these photons: -R,, < d < r. If we assume that 

R(tin) z R,, and that the radius of the bubble at time t is given by (7 - t)? it follows 

that 

A(d,b=O)=+l. (4) 

This agrees well with our numerical results, except for the region around d = -R,. 

Since results for this regime are suspect anyway, we will be content to use this analytic 

form in the rest of our analysis. 

From Eq. (4) we calculate the probability that a spot produced by a bubble of initial 

size R,, has a temperature shift greater than (GMa/R,,& do at its center: 

P(d > do) = &. 

To determine the distribution of spots on the sky as a function of angular size and temper- 

ature fluctuation amplitude we consider a spatially-flat, matter-dominated Universe with 

cosmological scale factor a(t) = (l+r)-l = (t/to) *13, where z is the red shift corresponding 

to time t and to = 2Hr’/3 is the present age of the Universe. Based upon the “scaling” 

solution found in the numerical simulations of Press, Ryden, and Spergel (1989), we as- 

sume that both the number of vacuum bags that form in a Hubble volume in a Hubble 

time and the size of the typical bubble formed (relative to the Hubble radius) are constant. 

Quantitatively, we write dn = adt/t4, where dn is the number density of bubbles of initial 

size R,, = 
. 

Pt and lifetime T = yPt that form between time t and t + dt. The quantities 

(Y, /3, and y are dimensionless parameters; based on the simulations of Press, Ryden, and 

Spergel (1989) (I and p are expected to be O(O.1 - l), while y is expected to be slightly 

larger that unity. The number of spots on the sky due to bubbles that form at time t is 

dN = Vdn, where V is the volume of space containing the bubbles that lie in our past 
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light cone. It is easy to see that V is a spherical shell centered about us whose comoving 

radius r(t) = 2H,7’[1 - (1 + z)-‘/‘I with thickness (1 + r),& so that 

dN = 547ro/3(1 + y) 
2;r-2(l+*)“2d;, 

1+z 

In Eq. (1) we defined A as the frequency shift relative to the quantity GM/R,,. How- 

ever, R,, is epoch dependent. It is convenient to define the scaled quantity A s At/to 

so that the temperature shift due to any bubble is measured relative to the characteristic 

amplitude BxpGoH{‘/3, 

6T 
r E 

> 
A=2.64~10-~h-‘,V (10;ev3) 2. (7) 

In terms of A, P(d > do) is: P(A > &) = l/ [l + (1 + .)3/2~0]. The total number of 

spots on the sky with amplitude A > & is given by 

.V(A > A()) = 
I 

ZF 
0 

P(A > &)dN 

= lSnaL?( I+ ,j 
i 

(&-2’3 + 2&-1/3 

) [ 

m 
(Ap + 1)Qio2’3 - ,y*/p3 + aFj 

(Afy3 - &l/3 + 1)(/p + ,432 1 
+ 2fi (A(y - 2.4()-l/3 > [--‘(‘“>‘) -ttan-l (2&;-l)] 

+21n 
1+ A0 

( )I 
312 aF +AlJ 
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where .ZF and a~ = (1 + ZF)-’ are the red shift and scale factor at the time of the phase 

transition. (Hill, Fry, and Schramm (1989) argue that ZF should be be between 100 and 

1000.) In the limit & >> 1, N(A > &) --t 36rap(l + r)/&; that is, the number of 

spots decreases only as the inverse of the spot amplitude, indicating that these microwave 

distortions are non-gaussian both because of their distinctive shape and the distribution 

of spot amplitudes. 

Now we determine the distribution of spots as a function of both amplitude and angular 

size. .4 vacuum bubble of physical radius R formed at time t subtends an angle 6 = 

2R/a(t)r(t) on the sky. Taking R to be the size of the bubble when the photons exit- 

which determines the spot size-then the angular size is related to 2 and z by, B(r,A) N 
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23/3&l + ~)~[l - (1 + z)-‘I*]: as expected, for fixed z the brighter spots have s:naller 

angular size. If a spot formed at red shift .z is to have an angular size 0 > 00, then 

necessarily 2 < &,(z), where &,(z) = 2$3/380(1 +z)*[! -(l +.r)-l/‘]. Therefore, the 

number of spots with A > & and 6’ > 00 is 

,~(~>~o,e,e~j=~m~(‘c’=F)[P(~>~)-P(~>j,,i]dN, (9) 

where &,,(zc) = & defines .+. The first term is given in Eq. (5), while the second is 

I 
PCA > &)dN = lOSrraB(y + 1) ,$ - r 

(k + 2) 

VZ 

+(k’+k+l)ln 
1+&k-l) 1 

fik >- +k-1 
1+&n--1) 

k > 1 +k+3 
2 ’ (10) 

where k = 2,!?/38~. A contour plot of N(A > &,0 > Q) is shown in Fig 2. 

Thus far we have considered only the collapse phase of a bubble. The fate of the 

bubble once it has collapsed depends on the thickness of the wall, the underlying particle 

physics model, and on the asphericity of the bubble. In models where the scalar potential 

is given by V(d) = -ma*@ + A$4, th e energy of the bubble is dissipated during the 

initial collapse in an outgoing pulse of scalar particles. On the other hand. sine-Gordon 

vacuum bubbles “bounce” (Widrow, 1989b): The collapsing bubble passes through itself, 

the bubble expands to a smaller maximum radius (because some of its energy is radiated 

in scalar particles), and so on. Photons traversing either an outgoing pulse of radiation 

or an expanding bubble experience a net blue shift. We therefore expect hot as well as 

cold spots on the sky, though their shapes and amplitudes may be different. The number 

of hot and cold spots should be about equal unless collapse of a bubble to a black hole is 

common; if most bubbles suffer this fate (on the tirst bounce) blue spots will be rare. 

Recent experiments have set strong limits to the isotropy of the microwave background. 

RELICT has mapped 75% of the sky and finds no fluctuations with 6T/T 2 6 x 10e5 on 

angular scales 2 3’ (Klypin et al., 1988; Starobinskii, 1990). Preiiminary COBE results 

(Smoot ,199O) provide the weaker limit of 3 x 10s4 on scales of a few degrees. By demanding 

that there be less than one spot of size 3’ and amplitude 6 x 10m5 one can place a limit 

to the surface tension 6: For the plausible values 01 = 0.5, 9 = 0.2, and y = 1, it is 

o 5 10 MeV3. In the original model of Hill, Fry, and Schramm (1989) 0 w 30 MeV3. 

Cosmic textures (Turok, 1989), recently been proposed as another topological mech- 

anism for seeding the large-scale structure, also give rise to hot and cold spots on the 
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sky, though in this case there is a characteristic temperature shift that is set by particle 

physics (Turok and Spergel, 1990). The distribution of spots as a function of amplitude 

is therefore very different than that for vacuum bubbles, and one should be able to easily 

differentiate between the two models if spot-like distortions on the sky are detected. 

In sum, a domain-wall network formed in a post-recombination phase transition gives 

rise to microwave fluctuations through the gravitational effects of infinite walls, the Rees- 

Sciama effect for accreting matter, and the collapse of vacuum bubbles. The distortions 

that result from collapsing bubbles are much larger and more important than those from 

the Rees-Sciama effect and are of comparable or larger amplitude, but smaller angular size, 

than those from infinite wails. They have a characteristic signature that should permit 

stringent tests of the late-time phase-transition scenario soon. 
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FIGURE CAPTIONS 

Fig. 1: Profiles of the distortion amplitude A versus impact parameter b for spots with 

various values of dJRmax. 

Fig. 2: Contours of the number of spots on the sky, in units of ap(l + y), with central 

amplitude 6T/T greater than (ST/T)0 (’ m units of 87rGPH<‘0/3) and angulx size greater 

than 00 (in tits of 0 degrees): N(A > &, 0 > @o)/ap(I +7) for ZF = 100. 
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